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ABSTRACT 

We derive and discuss a representation of the 2+n production amplitude 

in the multiregge limit which exhibits signature factors and singularity 

structure allowed by the Steinmann relations. We demonstrate how ea.ch 

term of the representation can be understood in terms of the more familiar 

2+2 amplitudes, and prove that the representation can be cast into a 

factorizing form. 

Supported by the Max Kade Foundation. 

3 Operated by Universities Research Association Inc. Under Contract with the United States Atomid Energy Commission 



-2- FERMILAB-Pub-74/94-THY 

I. INTRODUCTION 

Within the last years substantial progress has been made in 

understanding the nature of Regge cuts in 2 + 2 processes. Almost 

ten years ago, Gribov, Pomeranchuk and Ter-Martirosyanl showed 

that multiparticle intermediate states in the t-channel partial wave 

unitarity relations generate branch points in the angular momentum 

plane. More recently, A. White’ rederived and extended these results 

on a more rigorous basis. Rather independent of this approach, Gribov 

derived a Reggeon diagram technique3 by considering the high-energy 

behavior of a certain class of Feynman diagrams within the simple o3 

model. The structure of the rules, however, turned out to be of much 

more general validity,and they satisfy completely the t-channel unitarity 

relations. They have the character of a three dimensional nonrelativistic 

field theory (one time, two space dimensions), where the coupling between 

the fields as well as the form of the bare propagator are not specified. 

4.5 Very recently, the application of renormalization group techniques to 

this Reggeon field theory has lead to very interesting results which, in 

particular, strongly emphasize the importance of cuts in addition to Regge 

poles. 

The comparison with this, the situation in inelastic processes to 

which Regge ideas have been applied (particle production, inclusive 

processes) is less satisfactory. Migdal, Polyakov, and Ter-Martirosyan4 
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extended the idea of reggeon field theory to such inelastic processes, but 

their rules do not take care of signature or singularity structure which 

turned out to be rather crucial in at least some of these processes, and, 

therefore, their results must be correct only as an approximation. A 

derivation of a reggeon calculus which can compare with Gribov’s work 

on the 2-2 process as well as an investigation of crossed channel unitarity 

contributions are still outstanding. On the other hand, it is now generally 

believed that Regge -cuts must play an important role in inelastic processes: 

the assumption that pure Regge pole exchange dominates the high energy 

behavior leads to serious theoretical inconsistencies by requiring the 

decoupling of the pomeron from a large number of processes, 
6 

most likely 

even from elastic 2+2 scattering. However, these decoupling arguments 

would become invalid if cut contributions would turn out to be equally 

important as poles. This, in fact, is strongly suggested by the results 

of reggeon field theory in 2-2 processes. 

This makes it very desirable to extend Gribov’s reggeon calculus 

to these inelastic processes. The experience of 2+2 processes suggests 

two ways which might be promising. The one is a set of discontinuity 

formulas, derived from partial wave unitarity relations in the crossed 

channels, the other a reggeon diagram technique which solves these 

discontinuity formulas. The success of Gribov’s work suggests to derive 

such a diagram technique again from a careful study of hybrid Feynman 

diagrams. This is what we are doing in this and a subsequent paper, 
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restricting ourselves to the multiregge limit of production amplitudes. 

Triple Regge limit and other inelastic processes will, hopefully, be the 

object of future investigations. 

Multiregge behavior in 2-n production amplitudes with pure pole 

exchange has been suggested already some time ago8 Attempts to include 

Regge cuts and to extend Gribov’s reggeon calculus to this kind of processes 

have been started by several authors, 
9-12 

but they remained incomplete 

and have not yet reached the level where underlying general rules 

become visible. The reason for this failure is essentially the presence of 

signature factors. To illustrate this in more detail we remember that when 

the Z-+2 amplitude is written as 

(1.2) 

the partial wave fj(t) is a real analytic function. This is the reason why 

in Gribov’s reggeon diagram technique signature factors of internal lines 

can always be extracted in such a way that the amplitude is written as 

signature factor times real analytic function. In reggeon diagrams of 

production amplitudes, however, it has not yet been possible to write 

the amplitude as pIas? factor times a real function, and no general scheme 

has been found how to combine the signature factors of internal lines in 

any suitable way. 
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Knowing that it is the signature which caused the trouble in applying 

Gribov’s technique of hybrid Feynman diagrams to production amplitudes, 

it is natural to go back to the simplest multiregge amplitudes with pure 

pole exchange (Fig. 1) and examine the signature structure. Studying the 

diagram of Fig. 1 in the multiregge limit: 

s=s 
abc 

*m,s -02,s em 
ab bc 

S abSbc 
r)= s 

abc 
I t1 I t2 fixed , 

Drummond et al. 
13 

have pointed out that the factorizing 

(I. 3) 

form: 

T 2+3 = g(t,)s;;$ f 
(Yla2 

(tl t2 b;; Ea 

J = e;;y; 

2 
g(t,) 

(1.4) 

is not appropriate, because the reggeon-particle-reggeon coupling function 

f 
(Ila2 

still contains phase factors and has a nontrivial singularity structure 

in r) as well. 
14 

Instead of (1.4), a more suitable representation has been 

found: 

T 2-3 = g(t,Mt,) s 
@I @Z-O1 

‘bc 5 5 
(y2 LyI(y2 vR 

e 
-irr(a2-al)+r ~ 

5 = sin ~(LY ’ ’ (1.5) 
a2al 2-@1’ 

where V L , VR are now real functions of tl , t2 , q, and are supposed 

to have no singularities in rl around rj = 0 . 
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A decomposition similar to (1. 5) has also been suggested 5,6 for 

the 2-4 amplitude, and it has been shown that (1.5)as well as the analogous 

representation of the 2-4 amplitude are identical to the factorizing forms 

(1.4) and a similar one for the 2-4 case, respectively. The representation 

(1. 5), however, has the advantage over (1.4) by exhibiting explicitly all 

phase factors; the remaining coefficient functions VR and VL are real. 

In view of the difficulties with signature factors mentioned above, this 

representation seems to be a strmgcandidate for a form in which Regge 

cuts might easily be included. 

Our subsequent investigation will show that this is, indeed, correct. 

More precisely, we shall find that the representation (1. 5), written as a 

double Mellin transform: 

T 
-1. 2 J1 32-31 

= 
2-3 z 

sbc 5. 5. F 
J1 J2Ji L 

(j 
1 

j t 
2 1 t 

2 
ti 

+ sJ2sJl-J2 
ab Sj2~j,j2FR(~,j2t,t21 (1.6) 

remain valid for all reggeon diagrams (one example in Fig. 2). The 

functions FL , FR being real analytic. (1.6) is thus the generalization 

of (1.1). Moreover, the way in which a given reggeon diagram contributes 

to FL and FR , is a straightforward extension of Gribov’s reggeon diagram 

technique for the 2+2 amplitude: the underlying structure is, again, a 

nonrelativistic field theory with one time and two space dimensions, and 

what is new is the vertex where the produced particle couples to reggeons. 
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This result is also generalized to more than 3 outgoing particles: we 

shall describe the generalization of (i-6), and the way in which Regge 

cuts contribute to the (always real analytic) coefficient functions is a 

simple generalization of the 2-3 rules. In a special case, when all 

reggeons are pomerons, and only the region ti -0, j. * i is considered, 
I 

our diagram technique reproduces the field theoretical rules of Migdal, 

Polyakov, and Ter-Martirosyan! But our rules are also applicable to 

other reggeons than the pomeron and of the same general validity as 

Gribov’s calculus for the 2-2 amplitude. 

Comparing (1.6) with (i.f), we are obviously confronted with new 

features which are not presfit in the familiar 2-2 scattering amplitude: 

two terms instead of one, and a new signature factor. We, therefore, 

feel that it is necessary to discuss this representation in a little more 

detail. In case of the 2-3 amplitude, we will mainly review the arguments of 

Drummond et a13 and J. Weis’ which lead to (1.5), but in order to derive the 

analogous representation for the general 2 +n case we need some more insight. 

We also will show that our representation is compatible with the factorizing 

form (like(l.4) for the 2+3 case). 

Thus our study naturally breaks into two parts. In the first part (this 

paper) we are concerned with a discussion of the representation (1.5) and 

its analogue for the 2+n amplitude. Section II contains a review of the 2-3 

amplitude which enables us to find in Section III the general scheme of 

this decomposition. All this will be based on multiregge amplitudes with 

pure pole exchange. In the following paper we then turn to an extensive study 
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of hybrid Feynman diagrams and will find (a) that the representation 

found in Part I remains valid in presence of cuts and (b) that the underlying 

structure of how the cut contributions are computed is that of a reggeon 

field theory. 

II. SIGNATURE AND SINGULARITY STRUCTURE IN THE 2.43 AMPLITUDE 

We said already in the introduction that the correct treatment of 

signature plays an important role in the study of the production amplitude. 

We therefore start with a reconsideration of signature and singularity 

structure in the 2+3 amplitude. This will mainly be a review of arguments 

given by Drummond et al.f3 and J. Weis15’ *’ In the next section we shall 

extend this consideration to the 2+n amplitude and find the representation 

which will be of importance later on. For a general review on Regge 

behavior in inelastic processes we refer to the article of Brown, De Tar, 

and Weis 
17 

which also contains a complete list of references. 

Let us now start with the 2+3 process of Fig. 1 in the double Regge 

limit : 

s, Sab’ Sbc-m 

S abSbc 
r)= 

S I ti’ t2 fixed (2.1) 

Following the argument of Drummond et al. 
13 

we write the amplitude 

as a sum of four terms with only right-hand or left-hand cuts in the energy 

variables (Fig. 3). The first part has only right-hand cuts in s, sab, sbc, 
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and in the double Regge limit behaves as 

(-Sab) 
LyI 

go,) sin 71 (y 
(-sbc) 

@2 

1 
ra ~ (t zt *rl) sin ~ (y at,) . 

12t 2 2 
(2.2) 

Here g(t) denotes the reggeon-particle-particle vertex function. The 

function F 
13 

@ie2 
is real analytic, and as a function of n has the form: 

-a -a 
r = (-II) *vL(t,t2n) + (WI) 2+R(tl’ t2’ r)) (2.3) 

@ia2 

where yL(GR) have no further singularities around n = 0 (the meaning 

of the subscripts will become clear later). Now (2. 2) can be rewritten as: 

g(t,k(t,) eZ-al- n2 
sin 1~ (Y 1 sin T (Y 2 

VL + t-s) (-Sab) a1 -‘y2_ vR I . (2.4) 

At this point it is necessary to remember an important analyticity 

property of multiparticle amplitudes which is closely related to the 

18 
Steinmann relations. In the physical region the amplitude is not allowed 

to have simultaneous discontinuities in energy variables of overlapping 

channels ( two channels are defined to be overlapping when they have 

particles in common but are not subchannels of each other. For our 

2-3 amplitude (ab) and (bc) are overlapping channels, while (ab) is a 

subchannel of (abc)). Since Regge behavior in a given channel can be 

thought of as resulting from the superposition of energy thresholds in 

this channel, one concludes that Regge behavior, such as given in (2. Z), 

is not in agreement with this required analyticity property. In other 
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words, l? 
Llla2 

must necessarily contain n -factors if the amplitude is to 

behave like sPower . pwer or pwer . sPower rather than 
ab bc 

spewer * power 
ab ‘bc . This explains (2. 3) and (2.4): the first term has 

simultaneous singularities in s and s 
bc ’ 

the second one in s and sab . 

Graphically, their content of discontinuities is shown in Fig. 4. The form 

(2.3), which is necessary to satisfy the analyticity requirements has been 

derived from the dual model 
15 

as well as from hybrid Feynman diagrams, 

14 
the ladder model, and the Van Hove model. A partial wave analysis 

based on S-matrix principles leads to the same form. 
49,20 

We now turn to the question of phase factors in Fig. 3. The first 

term has only right-hand cuts in all three energy variables, and in the 

physical region one has to approach these cuts from above. Starting with, 

say, s ab 
on the negative real axis which is free from singularities we 

move to the positive real axis: 

Similarlg: 

S 
ab 

+ ie = (-s 
ab 

)e-lT , s 
ab > 0 . 

sbc + ie = (-s 
bc )e-‘a , s bc > 0 

s + ic = (-s)e 
-iv 

,s>o 2 

and (2.4) becomes: 
g(yg(t2) 

sin ‘TT(Y 
1 

sin TIC 2 

-irra -in(a2-a+) 
le 

?L 

a2 al-cY2 -I=*2 
-irr(a 

+s s 
1 -(y2) 

ab 
e e 

?R 1 

(2.5) 

(2.6) 

(2.7) 

(7-W 
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In the second term, sab < 0 , sbc > 0 , and s < 0, and only sbc is 

multiplied by a phase factor, in the third term sab > 0 , sbc < 0 , and 

s < 0 and so forth. The whole amplitude then becomes: 

g(t,k(t,) 

sin ~T(Y 
1 sin ..2[~~s;f-“‘(e-i”“+~3 (e-iir(u2-a’)+ T1-r2)TL 

a’ (Y1-a2 +s s 
ab c e-lncr2 

- in(a 
+T e 

)i 
1-“2) 

2 +rir2 R ) I 
Y (2.9) 

We can still put this in a more symmetric form by making use of sinus- 

factors contained in vR (vL): 

sin ala 
TL = 

2 
sin .rr(a2-aY1) vL 

sin VQ 
7 = 1 v R sin rr(cui-cu2) R 

(2.10) 

Formula (2.9) can then be written as: 

T 
a1 (y2-(y1 

2-3 = gN,k(t,) s ‘bc 5 5 
v + s(Y2sai-@2 

@i O2@i ? ab 65 VR 
I 

- irrcv 
-17T'(cY1-e2) 

a2 @icu2 

with $ = e. +r , E = e sin ir(a 
+T1T2 

(2.11) 
sm ~icy Ol@2 1+2) 

We still mention that (2.11) is equivalent to the factorized form 

(1.4). Obviously, one can write (2.9) as 

ai @2 
g(tlk(tf)sa,,s,,cSa $ ’ 

[ 

+i cul 
4 

-a2 @2 7 

i 2 (y1Ly2 
vL+v m 

@i@2 R I 
(2.12) 

a. 
with I$ i = e 

al(Y2 
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The phase factors e 
*iv are connected with the -+ie prescription: 

+I ai -0. 
v 4 ~1~2 = (@id ’ - ‘172 i~j&d~~i-(~i~~~a~ (2e 13) 

and (2.12) is the same as 

T 2-3 = sct,kct,b~~~~~g gQ r 
1 2 

[ 

Q*ayj*J 

*disc r 
q fflQ2 

I 

) (2.14) 

Here the term in brackets has to be compired with f 
oic12 

in (1.1). Because 

of the complicated structure of f 
ala2 

we consider the form (2.11) to be more 

suitable than (2.13). It is, however, sometimes useful to remember that 

(2.11) can be written in the form (2.13). The validity of (2.11) has been 

proved by A. White’s partial wave analysis of the five point functions, 20 

whereas the form (2.14) appears in dual models, 
15 

ladder graphs, and 

hybrid Feynmann diagrams. 
14 

Before we turn to the 2+4 amplitude and, more generally, to the 

2+n amplitude, we want to say few more words about (2.11). The first 

term can be written as 

(2.15) 

and has the same form as a 2+2 amplitude with exchange of reggeon cz 1 . 

The bracket term in (2.15), however, is not simply a reggeon-two particle 
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vertex, but a 2-Q amplitude by itself. It describes the scattering process: 

particle 2 + reggeon (pi + b + c (Fig. 5), and CO (y is the generalization 
2 I 

of the signature factor 5 when one external particle has noninteger spin 

21 @2 

al * 
As reggeon my1 becomes a physical particle - cyl even (odd) for 

ri = +(-) - ) the signature factor c 
ai 

develops a pole (particle pole in 

the t,-channel), and its residue is: 

a’1 -@i : g(ti)sab 
[ 
rl vL(ds;;I, g(t2) . 

2 1 (2.16) 

1n (2.16), 5 is what 5 has reduced to, and the vertex n 
a2 a2al 

has a simple form, too. For general (~~,a~ , VL(VR) are of the form 

(at least around n= 13)~~: 
m 

vLbp2tlt2rd = 1 c 
r(-ai+K)r(-cx2+a1-K) r(-ai)r(-a2) K! rlKP(a -K;t 1 iat2) K =o 

TRbia2tlt2ti = 1 ’ r(- 
r(-a,)r(-a2) c a2+K)r(-nf+a2-K) 

K! uKP(a2-K;tlt2) 

K=O (2.17) 

but when al is an integer, 
vL 

reduces to a polynomial in n of degree 

ai (the same happens with VR when cx2 becomes an integer; this explains 

our use of the labels L and R: VL(VR) reduces to a polynomial when the 

reggeon on the left (right)-hand side of the vertex becomes a physical 
-a 

state. ). Thence, n 
1 -1 

V,(n) is a polynomial in q of degree (Y 1 . But 

-1 since n is linearly related to the coskus of the Toller angle o: 

-1 = 
m2-t -t +2&T cos 0 

bi2 12 
q ? > (2.18) 
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-cl 
1 

r) V,(n) is a polynomial in cos w , too. This means that for integer 
-cY 

(of nonsense helicity states are decoupled, and n 1 
vL 

is a superposition 

of physical helicity states of reggeon LY 
1 . Putting this all together, we 

have found that, for integer ai , the bracket term in (2.16) is really a 

2+2 scattering amplitude with physical particles. 

For the second term in (2.11), the same holds for ai and cu2 , 

tf and t2 , sab and sbc interchanged. Finally, we note that (2.11) has 

no pole when in 5 
*iLy2 

and 5 
eZal 

the denominator sin ?T (~~-a~) vanishes, 

This is most easily seen when we rewrite (2. 17) into the form 17 : 

1 1 
r(-ai)r(-a2) 2ni 

I 
dn r(-n)r(n-al)I’(n-a2)n-n 

. Pb tlt2) (2.19) 

where the contour of the n-integration lies left to the poles of I?(-n) and 

right to those of l?(n-a,)I’(n-@2) . For al-a2 integer, (2.19) remains 

finite and, because of (2. 3) and (2.14), T2,3 has not pole either. 

This completes our discussion of the 2-3 amplitude. The main 

result is the representation (2. ii), and we have illustrated in some detail 

its properties: how it reflects the s-channel discontinuity structure, and 

how each term can be understood in terms of the more familiar 2-2 

amplitudes. In the next section, this discussion will help us to construct 

the analogue to (2. ii) of the 2-n amplitude. 
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III. THE 2-+n AMPLITUDE 

As a preparation, we take the 2-4 amplitude (Fig. 6). n-variables 

are defined by 

‘abSbc 
%I= S 

, rl = ‘bcScd 

abc c ‘bed 

and in the multiregge limit 

s, sabp sbc, scd - m 

a, 
v 

ti, t2, t3 fixed (3. 2) 

we have the further relation: 

(3.1) 

One realizes that not all energy variables are independent. A minimal 

set of variables would be: s ab’ ‘bc’ t ‘cd’ nb’ nc’ 1’ t2, t3, but it is 

convenient to use the other energy variables, too. By application of the 

same arguments as we have used for the 2-3 amplitude, J. Weis 
16 

has 

shown that in the limit (3. 2) T2,4 can be written as: 

T 
cul cu2-cui CY3-a2 

2-4 = g(t,ke,) s Sbcd Scd ta 5 E 
1 (y2Q1 a3a2 

VL(y$VLhc7c) 

+ s”2sa1-a2sa3-02 
ab cd E5 E 

Ly2 m’la2 @3”2 
vR(r7bwLbJc) 

@3 *2-@3 (y -CT 
+s s si abc ab 25 5 ~1~ cr2a3’~ia2VR(flb)VR(nc) 

Q3 Q1-(y3 +s s a2-al 
abc sbc 5 E a3 a,a3Sa2~1VL(qb)VR(n c) 

(Cont. ) 
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+ sal a3-(Y1 (Y2-a3 
‘bed ‘bc E 5 (pi a3c$r2,x3VL(Rb)VR(nc) (3.4) 

It is now quite tempting to apply the arguments of the previous 

section to this representation. With the understanding that the appearance 

of spewer signalizes a non-vanishing discontinuity in s. one associates 
1K. . . 1K. . . 

with each term in (3.4) a certain set of simultaneous discontinuities (Fig. 7). 

Apparently, these are all allowed sets of s-cuts, because any other set would 

contain either intersecting cut-lines which correspond to discontinuities 

in overlapping channels or a smaller number of simultaneous discontinuities. 

Let us now pick out one term of (3.4), say the first one. We write it 

as&--i ++J 5a2(yi kLc&: :3atct3j 1. (3.5) 

Paying no attention to the content of the curley brackets we find that (3. 5) 

has the form of a 2+2 scattering amplitude (Fig. 8a): 1 + 2 - a-+ cluster 

(bed) with a large rapidity gap between a and cluster (bed). Turning 

now to the curley brackets, but neglecting still the content of the square 

brackets, one again finds the form of a 2-2 scattering amplitude (Fig. 8b): 

reggeon (pi + particle 2-b + cluster (cd) with a rapidity gap between b 

and cluster (cd). We note the appearance of c instead of 5 : this 
a2(Y1 @2 

is due to the incoming reggeon cy 1 with nonintegral spin. When ~yi takes 

a physical integer value, then 5 =5 and {aiVL’a! reduces to a 
Q2Ly1 @2 

polynomial in helicity of reggeon (Ye. Finally, the same argument applies 
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to the square brackets in (3. 5): it is the amplitude for reggeon a2 + 

particle 2 -+ c + d(Fig. 8~). 

The way in which we have reduced this term of the 2 + 4 amplitude 

to a sequence of 2 + 2 amplitude can nicely be illustrated in Fig. 7a. 

First we considered the amplitude 1 + 2 - a + cluster (bed): The lowest 

cut-line belongs iothe energy s which has to be large for this process, the 

next lower line the way in which the outgoing particles are clustered. 

In the next step we consideredthe cluster (bed) alone and applied to it the same 

argument again: the lower line denotes the overall cluster energy sbcd, the 

next line the way in which the outgoing particles have to be clustered. In 

each of these steps, the power of the large energy is the reggeon between 

the outgoing cluster , and the signature factor refers to the exchanged 

reggeon as well as the incoming reggeon. As to the question whether to use 

VL or VR for the reggeon-particle-reggeon vertex, it is obvious that it 

is answered by the requirement of the nonsense helicity decoupling. 

Comparing this with our Fig. 7a, we see that for any vertex the label L 

or R denotes the side of the vertex where one (or more) cut line leaves 

the diagram. 

The other terms in (3.4) can be treated in a quite similar way. We 

demonstrate this still for the last term. The analogue to (3. 5) is: 

@i 
a,) $- E 

bed cui 
vR(qc)l (~[3~c3Q;(t3)} (3. 6) 
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The first step is the same as in the previous case (Fig. 9a). The curley 

brackets in (3.6) now describe: reggeon pi + particle 2 + cluster (bc) + d 

with a rapidity gap between cluster (bc) and d (Fig. 9b). When (Y$ becomes 

a physical integer, the residue of the pole in 5 becomes: 
0. 

As to the decoupling of nonsense helicity states, we have to specify the 

reference frame the helicity of reggeon cy 1 refers to. One possible frame 

is the CM-system of cluster (bc) and reggeon (Y 
3 

with the Toller angle 

Obc ’ the other the CM-system of particle b and reggeon a2 with the 

Toller angel mb . In the first case, one can show that 
-1 

n 
b can be 

expressed in terms of n ,w c bSWbc : 

-1 
nb P(cos w b,sin w 

b 
, cos w bc, sin 0 

bc’ 
-a 

(3.8) 

where the function P is linear in all variables, and since r) b ivL!ub) 

is a polynomial of degree in n 
-1 

(Y 1 b ’ we have a polynomial in sin w bc 

and cos w bc as well, and the nonsense helicity states are absent. Within 

the second reference frame, the cosinus of the Toller angle w b is linearly 

related to n -1 
b by (2.18), and the decoupling of nonsense helicity works, 

too. 

In the last step, we consider the term in square brackets in (3.6) 

which describes the process: reggeon ai + reggeon m3 + b + c (Fig. SC). 

It is important to note that the signature factor 5 
(y2U3 

of this amplitude 
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refers only to reggeon 22 LY 
2 and to reggeon cu3 but not reggeon (Ye. When a1 

-(I 
1 -(Y 

and (Ye are physical integers, then 5 = 6 , and y, VLqJ > ‘1, 
3 

@Za3 Ly2 
VR(‘lc) 

reduce to polynomials in cos oh and cos w -. c, respectively. 

It is easy to trace this reduction procedure in Fig. 7e. What is new 

in comparison with Fig. 7a is the appearance of a reggeon + reggeon - 

particle + particle amplitude. In writing down its high energy form, we 

have to remember that the signature factor refers only to one of the 

incoming reggeons: to that reggeon which in the next large cluster (or in 

the preceding step of our analysis) has been exchanged between the 

outgoing particles (or clusters) 

This completes our analysis of (3.4). It has taught us that the 

arguments of the previous section are completely sufficient for the 

understanding of the more complicated 2 - 4 amplitude. However, what 

we have gained more is a simple set of heuristic rules which allow to 

construct, for a given set of discontinuity lines (Fig. 7), the corresponding 

term in the decomposition (3. 5). We shall formulate these rules in a moment, 

So far, we have been concerned only with the two simplest cases 

2-3and2-4. In the same way as we derived in Section II the 

representation (2.11) 
( 
and J. Weis has derived (3.4) 

) 
, we could also 

proceed with 2 + 5 etc. However, the algebra of phase factors becomes 

more and more tedious. On the other hand, we have distillated a scheme 

in which both 2 + 3 and 2 - 4 fit naturally, and we might expect that it 
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applies to the general case, too. As a proof that this is indeed the case, 

we show in the appendix that our representation (2. 11), (3.4) and the 
( 

analogue for 2 - n which we w ill describe in a moment can be written 

in the factorized form (Fig. 10): 

a 

f n-l 
on-2an-1sn-ln ‘a g@,-l ) (3.9) 

n-l 

where f 
alC’2 

is given by (2.12): 

- f -2 (12 

@fcy2 vL(n,2)+ ‘12 %z1a2 T(I) ). R 12 
(3.10) 

This form (3. 9) emerges in dual models 
15 

as well as in hybrid Feynman 

diagrams, 
11 

and this is, for the moment, all we have on the 2 - n amplitude. 

Showing the identity of (3. 9) and our representation has still the other 

virtue that it demonstrates the absence of poles due to the signature factors 

6 etc. : we have shown above that f 
*y1°2 (Yla2 

does not have them, and, 

therefore, they are absent in (3. 9) as well. 

We have now to specify the analogue of (2.11) and (3.4) for the 

general 2 - n case. To do this we simply summarize the rules which 

allowed us to construct the 2 + 3 and 2 - 4 amplitude and, for illustration, 

apply them to one more complicated diagram. These construction rules 

will then provide a general definition of our representation. 

The rules are: 

(a) first draw all allowed sets of discontinuity sets. A set is defined to 

be allowed if (i) lines do not intersect and (ii) no further lines can be 



-21- FERMILAB-Pub-74[94-THY 

drawn without violating (i). (Intersecting lines correspond to discontinuities 

in overlapping channels). For any set (for illustration we choose one of 

the 2 * 5 process, Fig. 11): 

(b) consider it as a 2-2 scattering amplitude 1 + 2 + cluster (abc) + 

cluster (dc). The clusters are given by the two cut lines above the overall 

s-cut. For large s this amplitude is dominated by reggeon exchange 

between these two clusters: 

(y3 
5 v a3 de . 

(3.11) 

For any of the clusters, say (abc): 

(c) consider it as a 2 - 2 scattering amplitude 1 + reggeon or 
3 

+a+ 

cluster (bc). The clustering of the outgoing particles is again given by the 

cut lines above the overall cut of this amplitude. For large sabc the 

reggeon exchange between the outgoing clusters is given by: 

V abc 
(3.12) 

Here 5 
@la3 

indicates that our incoming particle has noninteger spin. 

For cluster Vbc: 

(d) there are only two outgoing particles. If we had more, we would have 

to repeat step (c) until we end up with only two single outgoing particles. 

Considering Vbc as the amplitude reggeon CI 
1 

+ reggeon cr 
3 -b+c, 

we obtain: 
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(3.13) 

where the signature factor refers only to w 
1 

which in the previous step 

has been the exchanged reggeon. 

(e) Repeating this procedure for the other cluster in (3. 11): 

‘de = ‘dsdeSor (Y 4 3 
‘e (3.14) 

we put all parts (3. 11) - (3. 14) together and obtain: 

@2 
5 alu3Vbsbc50/2cxl 

V 

a4 V 
‘de’a4a3 e 

@3 

5c,3vd 

(y3 LY1-a3 cY4-a3 a2-cl1 
=s s 

abc ‘de ‘bc 55 5 c 
(y3 @la3 cy2(yl eqa3 

VaVbVcVdVe . (3.15) 

(f) Finally, we set V 
a = g(t,). Ve = g(t,) and label the other vertex 

functions by L or R, according to whether to the left or right-hand 

side of the produced particle cut lines are leaving the amplitude: 

V b - VR(nb, t4,t2,ala2) etc. Then (3. i5) becomes: 

s*3s*l-a3 04-“3 a2-n1 
abc ‘de ‘bc 5E 5 6 

cu3 @‘la3 @2@i O4@3 
g(t,)VR(13)VR(~c)VL(“d) 

. at,) (3.16) 
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IV. SUMMARY 

In this paper, we have found a representation of the production 

amplitude in the multiregge limit. It is a sum of terms, each of which 

represents a certain set of allowed simultaneous discontinuities and allows 

a simple interpretation in terms of 2 + 2 amplitudes. Furthermore, the 

phase factors are extracted, and the remaining functions are real. It is 

this representation which remains valid when Regge cuts are included. 

This will be shown in the following part of our study. 
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APPENDIX 

In this appendix we prove that our decomposition of the 2+n amplitude 

which we have described in Sec. III can always be written in the following 

factorizing form 

(A. 1) 

when f 
@ID2 

is given in (2.12): 

-a 
f 
“la2 

Iti 
al 

7 (I) 
-a2 u2 

= ?2 aIcY L 12 ‘+v12 4 7 (rl ‘Y~(Y~ R 12 I (A. 2) 

al, 2 = eliral, 2 T172 
-iircr 

+ 1, lTffl, 
@ia2 -irra I( -iricr 2 

zme 2 1. 
1 

+T e 1 +r 

For convenience, we shall write (A. 2) as: 

with 

-(Y -CT 
f 1 

= rll2 
a @I 

@la2 
a,CY2VL(v12) + ‘112 

sin TI LY 

‘Z~CY~= 4~~a2 sin ‘(“2-ti) 

R 
u2 

sin TI (Y 

a2al 
=4 

a2 1 

al(Y2 
sin *(a 1-m2) . 

By some algebra one can check that 

and 

n 
@la3 a3(Y2 

(A. 3) 

(A. 4) 

(A. 5) 

C-4.6) 
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For our proof we proceed as follows. In Sec. II we have demonstrated 

how our decomposition for the 2 -3 amplitude can be written in the 

factorized form. Assuming that we have proven this already for the 

Z+(n-1) amplitude, we shall then show the validity for the Z+n amplitude. 

For sake of simplicity, however, we illustrate in the following how one 

steps from the 2+4 to the 2-5 amplitude, and it will then be clear that 

with the same procedure the general step from 2+(n-1) to 2-n can be 

performed. 

We now turn to the 2+5 amplitude (Fig. 12) and will demonstrate 

that the factorized form 

(A. 6) 

can be cast into our decomposition (which now has already 14 terms). 

In (A. 6), we insert for f formula (A. 3), combine 5 Q 
(y2 

@in2 
= 5 

al cv2al @lLY2 
with (A. 4) and set sbC/x = sabc/ sab : 

VR$’ 1 Ea s a2 f 2abccua “’ 
2 3 

@I -0 

’ g(tl)*alSabVL(%)flb 
1 al (y2 
RLufo2Ea2sbcfa (y ’ . 

2 3 
(A. 7) 

In the brackets of the first term, we recognize the amplitude 1 +reggeon 

a2+ a + b. Treating it as a vertex particle 1 - reggeon a2 - cluster ab, 

we write the first term of (A. 7) as: 

VabSa ’ 
a2 f 

2 abcc cr “. 
2 3 

g(t,) (A. 8) 
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It has precisely the form of a 2-4 amplitude, and hence, can be decomposed 

according to our scheme (Fig. 13). To obtain the complete singularity 

structure, however, we have to take care of the internal structure of V 
ab ’ 

According to what we said in Sec. III, Regge behavior within Vab corresponds 

to another discontinuity line in our diagrams. As depictured in Fig. 14, we 

have to insert a new cut wherever we see the cluster (ab). The right-hand 

side of Fig. 13 is thus transformed to Fig. 15. 

In the second term of (A. 7), we use (A. 3) for f : 
a2(Y3 

1 “i@2 a2(13 

-LX 3 
+ VRhchc R 

cy3 

@3@2 
(A. 9) 

Here we take the second term in the square brackets and combine: 

3 6 nQ3 =/I 5 +a@3 5 . 
alLV2 a2 LY3a2 aia3 02a3 a301 (y2@1 

(A. 10) 

This leads to: 

5 
“2a3 

VR(‘lc) 

-a 
+s 

3 
bc ’ 

a3 a2-al 
crla3VL(Rb)Sbc 5 a2~tvR(nc) 1 ‘::d ‘a3fa3u4 

* syz EQ4q . (A. 11) 
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One notices that in (A. 11) the term in brackets has the same structure as 

f in (A. 3) and can be written as: 
Oi@Z 

Fbc -@l/ul 
= ‘bc 

Vbc 

@y1e3 L 

-(Y3Ca3 Vbc 

cula3 + ‘bc ‘e3al R (A. 12) 

Thus (A. 11) is like a Z-*4 amplitude and can be decomposed into 5 terms 

(Fig. 16). 
bc bc 

But again we have to remember that VL and VR have 

internal Regge exchange themselves. Wherever we meet the cluster (bc) , 

we make the replacement of Fig. 17, and Fig. 16 is transformed into 

Fig. 18. 

Next we turn to the first term in (A. 9). For f we use (A. 3): 

g(tJfb. s 
1 
a 

1 

-LX 4 O4 1 
R v (I) 1 E a4a3 R 

(A. 13) 
c 1 a4 

For the term with VR(nc) we repeat the previous analysis and arrive at: 

5 Fed 
@4 

a2 cu2n4scde cu4 5 a,) (A. 14) 
1 

where F 
cd is the analogue of (A. 12). (A. 14) is like a 2-4 amplitude 
“Za4 

(Fig. l9), except for the vertex of particle b : instead of f, (I there is 
1 2 

only the first term of (A. 3). Therefore, when we apply our decomposition 

to (A. 14) and draw the five diagrams with cut lines, all discontinuity sets 

involving VR (nb) have to be left out, and we end up with only three 

diagrams (Fig. 20). 
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In the final step we examine the first term in (A. 13): 

(A. 15) 

which by use of (A. 5) can be written: 

g(tl)s 
al Lu2-C1 a3-n2 (Y4-a3 

‘bcde ‘cde ‘de 55 5 5 
(y1 cv2al cu3Lu2 (y4(y3 

(A. 16) 

. g(tl)vL(~b)VL(llc)VL(t7d) g(t,) (A. 16) 

which obviously is Fig. 21 and completes the set of allowed discontinuity 

sets (Figs. 15, 18, 20, 21). 

It is not difficult to see how our argument is generalized to more 

than 3 produced particles. Proceeding from the left to the right end of 

the diagram, we first decompose f and treat the V term. 
Qla2 

R 
Being 

left with the VL , we decompose f, (y and treat its VR . Repeating 
2 3 

this for each vertex, we are finally left with only VL’s from all vertices 

and handle this like (A. 15). Translating this into our diagrams w~ith sets 

of discontinuity lines, we create in the first step all configurations where 

particles a and b are combined into a cluster,then all diagrams with 

cluster bc and so forth. In the final step, particles c and d are clustered, but 

no clustering of a and b appears (otherwise we would have double counting, 
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for clustering of a and b has been covered in the first step). Obviously, 

in this way all possible configurations are created without any double 

counting. This completes our proof. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Fig. 12 

Fig. 13 

FIGURE CAPTIONS 

Double Regge limit of the 2-3 amplitude with Regge pole 

exchange. 

A cut contribution to the Z-+3 amplitude. 

Signature decomposition of the 2-3 amplitude. 

The two allowed sets of simultaneous energy discontinuities. 

The reggeon-particle + particle - particle scattering 

amplitude described by the bracket term of (2.15). 

The 2-4 amplitude with Regge pole exchange. 

The five allowed sets of simultaneous energy discontinuities 

of the 2-4 amplitude. 

Reduction of Fig. 7a to 2-2 amplitude: (a) 1 + 2 - a + 

cluster (bed); (b) reggeon a1 + 2 -+ b + cluster (cd); 

(c) reggeon a2 + 2 + c + d. 

Reduction of Fig. 7e: (a) 1 + 2 + a + cluster (bed); (b) reggeon 

@I + 2 + cluster (bc) + d; (c) reggeon a 1 
+ reggeon cy + b 

3 

+c. 

Multiregge limit of the 2- n amplitude. 

One allowed set of discontinuities for the 2-5 amplitude. 

Notations for the 2-5 amplitude. 

Decomposition of the 2-4 amplitude in (A. 8): 1 + 2 -+ cluster 

(ab) + c + d + e into the allowed sets of simultaneous 

singularities. 
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Fig. 14 

Fig. 15 

Fig. 16 

Fig. 17 

Fig. 18 

Fig. 19 

Fig. 20 

Fig. 2.1 

Replacement to be made in Fig. 13 in order to obtain 

Fig. 15. 

Five possible sets of discontinuities in the 2-5 amplitude, 

as obtained from Figs. 13 and 14. They represent the 

first term of (A. 7). 

Decomposition of the 2+4 amplitude (A. 11): 1 + 2 + a + 

cluster (bc) + d + e. 

Replacement in Fig. 16, which leads to Fig. 18. 

Five other possible sets of discontinuities in the 2-5 

amplitude, as obtained from Figs. 16 and 17. They 

represent (A. 11). 

2-4 amplitude 1 + 2 + a + b + cluster (cd) + e (A. 14). 

Three other possible sets of discontinuities in the 2-5 

amplitude, as obtained from Fig. 19 when clustering among 

particles a, and b is omitted. They represent (A. 14). 

The last set of discontinuities from (A. 16). 



a b C 

- %b- -Sbc- 
I 

“ b 1, 
I s I 

I 
Fig. I 

Fig. 2 



+ .I 0 s \ 

‘r: 
u-l I G UY \ i 



b C 

Fig. 5 

%b %b sbc sbc SCd SCd 

-~; ~, -~; ~, 

Fig. 6 Fig. 6 



a b c d 

-- A- -e---e- -- -L 

-- m--e--- -- + 

Fig.7 





. . . 

Fig, IO, 

SiSk 
Tik”G 

---A 
-- 

I 2 
Fig. Ii 



4 



ab a b 

J- 
Fig. 14 

cl bc d e 

-+4 

9 \ \ .- / 

OTHER TERMS 

Fig, 15 





-- \ - ‘\\ I 1 

%I 

9 I ’ ‘I -- ,’ 1; 
II I 

II -1 II 

a 
p,/t s -- /y g -H &) I 
\’ I\ 
I’ I /I I 

$1 I 

ZI 

// I I 
/I ’ d. I I 

,\\ ’ 

$i 
’ /II -- 1 II z 

%I 

‘/ -- ,I 2 
/’ I 

I 
I 


